Типы уплотнений

Уплотнение — это устройства для разделения внешней и внутренней сред, предотвращающее (или уменьшающее) утечку через подвижные или разъемные неподвижные соединения. Внешней средой, как правило, является запыленный воздух при атмосферном давлении, внутренней — смазочные материалы или масляный туман при избыточном давлении ≤ 0,1 МПа.

1

Плоские прокладки для герметизации неподвижных соединений

В результате механической обработки на контактирующих поверхностях неподвижных соединений образуются микронеровности, волнистость, отклонения от правильной геометрической формы. При контактировании таких поверхностей плоскость стыка покрывается сетью сквозных каналов, создающих негерметичность соединения. При затяжке стыка плоская прокладка деформируется, частично или полностью перекрывая сквозные каналы.

2

Резиновые армированные манжеты для валов

Эти манжеты являются контактными уплотнениями и обеспечивают достаточно высокую герметичность соединения (класс негерметичности в среднем 1-2, рисунок 22.7.3). Они имеют низкую стоимость (выпуск массовый) и выдерживают высокие скорости скольжения (до 37 м/с). Наличие металлического каркаса обеспечивает в эксплуатации надежную осевую фиксацию (рисунок 22.9.1). Для эксплуатации в загрязненной окружающей среде применяют манжеты с пыльником. Приведены требования к установке манжет и предельные отклонения посадочных мест (см. табл. 22.9.1), условия эксплуатации (см. табл. 22.9.2) и основные размеры манжет (см, табл. 22.9.3) по ГОСТ 8752-79. Прижатие кромки манжеты к валу обеспечивают силы упругости и браслетная пружина.Неметаллические прокладки требуют пониженных сил затяжки, однако они могут выдавливаться из открытых стыков, а при демонтаже соединения повреждаться. Деформация прокладки приводит к сближению поверхностей стыка, что в некоторых случаях недопустимо (например, в плоскости разъема корпуса и крышки редуктора). Металлические прокладки прочнее, температурный диапазон их шире, но стоимость выше, чем неметаллических (см. табл. 22.8.1). На рисунок 22.8.2 и рисунок 22.8.3 приведены характерные примеры плоских прокладок.

3

Примеры уплотнений подшипников качения

Манжеты по ГОСТ 8752-79 устанавливают браслетной пружиной во внутреннюю полость изделия непосредственно в корпус (рисунок 22.10.1), крышку (рисунок 22.10.4, а) или регулирующий винт (рисунок 22.10.2). При высоком уровне масла применяют сдвоенные манжеты с заполнением пространства между ними ПСМ 1-13 (рисунок 22.10.3). При значительном загрязнении окружающей среды применяют манжеты с пыльником (рисунок 22.10.4, а) или комбинированные (рисунок 22.10.4, б). Изображенный на рисунок 22.10.4, б маслоотражатель защищает подшипник от струй масла, выбрасываемых зубчатым зацеплением. При повышенном давлении (до 0,3 МПа) внутренней полости применяют манжеты с опорным конусом, препятствующим выворачиванию наружу кромки манжеты.

4

Контактные уплотнительные шайбы

Контактные уплотнительные шайбы изготавливают из стальной ленты так, чтобы рабочая торцовая кромка выступала за прижимную часть на 0,6 мм (рисунок 22.11.1). При установке торцовая кромка прижимается к кольцу подшипника (рисунок 22.11.2), препятствуя утечке из него ПСМ и защищая от загрязнений. Основные достоинства такиех шайб — простота конструкции и компактность.

5

Уплотнения торцовые

В торцовых уплотнениях происходит трение скольжения по торцовым поверхностям деталей вала и корпуса. Такие уплотнения весьма эффективны: имеют низкий момент трения; могут работать в широком диапазоне перепада давлений уплотняемых сред, скоростей скольжения, температур; способны уплотнять различные среды, в том числе агрессивные. Однако конструктивно они сложны, имеют большие размеры и стоимость. Торцовые уплотнения отличаются большим разнообразием конструкций, приведены на табл. 22.12.1. В качестве примера на рисунок 22.12.1 рассмотрено торцовое уплотнение для редуктора, работающего в среде загрязненного воздуха, а на рисунок 22.12.2 — для насоса.

6

Лабиринтные уплотнения

Бесконтактные уплотнения соединений вал-корпус имеют небольшие зазоры в виде радиальных или осевых каналов цилиндрической формы. При скорости вала до 25 м/с каналы заполняют ПСМ 1-13. Это определяет минимальные энергетические потери, практически неограниченную долговечность узла, но низкий класс негерметичности (5-6). На рисунок 22.13.1 изображено лабиринтное радиальное уплотнение подшипника, работающего на ПСМ, Кольцевые канавки (рисунок 22.13.5) повышают герметичность узла. Лабиринтное осевое уплотнение (рисунок 22.13.3) имеет составную втулку из внутренних гребней (дисков); внешние гребни установлены в сплошном корпусе; число ступеней (пар гребней) для узлов трения общего назначения составляет не более 3. Если позволяет масштаб производства, применяют штампованные диски (рисунок 22.13.4). В лабиринтном комбинированном уплотнении (рисунок 22.13.2) чередуются радиальные и осевые каналы, заполненные ПСМ. Острая кромка на периферии втулки служит пылеотбойником.

7

Герметики

Герметики представляют собой маловязкие пасты, обладающие хорошей проникающей способностью и адгезией. В процессе сборки они заполняют впадины микронеровностей, включая небольшие отклонения формы (до 0,5 мм). Герметики применяют для уплотнения неподвижных стыков, работающих без существенного избыточного давления (до 0,15 МПа) рабочей среды.
По составу герметики отличаются большим разнообразием. На рисунок 22.15.1 приведен пример применения герметиков в коническо-цилиндрическом редукторе для герметизации плоских (разрезы Б-Б и В-В) и цилиндрических (разрез А-А) стыков, а таже стопорения резьбовых соединений (разрез Б-Б, фрагмент Д) при возможности их демонтажа с помощью обычных гаечных ключей. Повторный монтаж изделий, собранных на герметике, требует удаления его остатков, что составляет определенные неудобства.

8